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1 INTRODUCTION 

In this part of the manual some scientific background is given of the theories and 
numerical methods on which the PLAXIS 3D FOUNDATION program is based. The 
manual contains a general chapter on deformation theory and a chapter on finite element 
formulations and integration rules for the various types of elements used in the 3D 
FOUNDATION program. In the Appendix a global calculation scheme is provided for a 
plastic deformation analysis.  

In addition to the specific information given in this part of the manual, more information 
on backgrounds of theory and numerical methods can be found in the literature, as a.o. 
referred to in Chapter 5. For detailed information on stresses, strains, constitutive 
modelling and the types of soil models used in the PLAXIS 3D FOUNDATION program, 
the reader is referred to the Material Models Manual. 
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2 DEFORMATION THEORY 

In this chapter the basic equations for the static deformation of a soil body are 
formulated within the framework of continuum mechanics. A restriction is made in the 
sense that deformations are considered to be small. This enables a formulation with 
reference to the original undeformed geometry. The continuum description is discretised 
according to the finite element method. 

2.1 BASIC EQUATIONS OF CONTINUUM DEFORMATION 

The static equilibrium of a continuum can be formulated as: 

0=+ pσLT  (2.1) 

This equation relates the spatial derivatives of the six stress components, assembled in 
vector s, to the three components of the body forces, assembled in vector p. LT is the 
transpose of a differential operator, defined as: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=  

 x y z

 z x y

 z y x

 LT

000

000

000

 (2.2) 

In addition to the equilibrium equation, the kinematic relation can be formulated as: 

u Lε =  (2.3) 

This equation expresses the six strain components, assembled in vector e, as the spatial 
derivatives of the three displacement components, assembled in vector u, using the 
previously defined differential operator L. The link between Eq. (2.1) and (2.3) is 
formed by a constitutive relation representing the material behaviour. Constitutive 
relations, i.e. relations between rates of stress and strain, are extensively discussed in the 
Material Models Manual. The general relation is repeated here for completeness: 

ε Mσ && =   (2.4) 



SCIENTIFIC MANUAL 

2-2 PLAXIS 3D FOUNDATION 

The combination of Eqs. (2.1), (2.3) and (2.4) would lead to a second-order partial 
differential equation in the displacements u.  

However, instead of a direct combination, the equilibrium equation is reformulated in a 
weak form according to Galerkin's variation principle (see among others Zienkiewicz, 
1967): 

( ) 0=+∫ dV pLu TT sd  (2.5) 

In this formulation du represents a kinematically admissible variation of displacements. 
Applying Green's theorem for partial integration to the first term in Eq. (2.5) leads to: 

∫∫∫ += dS tudV pudV TTT ddsed  (2.6) 

This introduces a boundary integral in which the boundary traction appears. The three 
components of the boundary traction are assembled in the vector t. Eq. (2.6) is referred 
to as the virtual work equation. 

The development of the stress state s can be regarded as an incremental process: 

σ i = σΔσ i- +1  σΔ  = ∫  d tσ&  (2.7) 

In this relation si represents the actual state of stress which is unknown and si-1 
represents the previous state of stress which is known. The stress increment Ds is the 
stress rate integrated over a small time increment. 

If Eq. (2.6) is considered for the actual state i, the unknown stresses si can be eliminated 
using Eq. (2.7): 

∫∫∫∫ -+=D dVσεδdStuδ dVpuδ dVσ εδ i-T iTiTT 1  (2.8) 

It should be noted that all quantities appearing in Eqs. (2.1) to (2.8) are functions of the 
position in the three-dimensional space. 

2.2 FINITE ELEMENT DISCRETISATION 

According to the finite element method a continuum is divided into a number of 
(volume) elements. Each element consists of a number of nodes. Each node has a 
number of degrees of freedom that correspond to discrete values of the unknowns in the 
boundary value problem to be solved. In the present case of deformation theory the 
degrees of freedom correspond to the displacement components. Within an element the 
displacement field u is obtained from the discrete nodal values in a vector v using 
interpolation functions assembled in matrix N : 
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u  = v N   (2.9) 

The interpolation functions in matrix N are often denoted as shape functions. 
Substitution of Eq. (2.9) in the kinematic relation (2.3) gives: 

e  = v N L  = v B  (2.10) 

In this relation B is the strain interpolation matrix, which contains the spatial derivatives 
of the interpolation functions. Eqs. (2.9) and (2.10) can be used in variational, 
incremental and rate form as well. 

Eq. (2.8) can now be reformulated in discretised form as: 

( ) ( ) ( ) ( )∫∫∫∫ -+=D dVσv δBdStv δN dVpv δN dVσv δB i-T iTiTT 1  (2.11) 

The discrete displacements can be placed outside the integral: 

∫∫∫∫ -+= dVσBvδ dStNvδdVpNvδdVσΔBvδ i-TTiTTiTTTT 1  (2.12) 

Provided that Eq. (2.12) holds for any kinematically admissible displacement variation 
dvT, the equation can be written as: 

∫∫∫∫ -+=D V d  B  Sd t NV d p NV d   B -iTi TiTT ss 1  (2.13) 

The above equation is the elaborated equilibrium condition in discretised form. The first 
term on the right-hand side together with the second term represent the current external 
force vector and the last term represents the internal reaction vector from the previous 
step. A difference between the external force vector and the internal reaction vector 
should be balanced by a stress increment Ds . 
The relation between stress increments and strain increments is usually non-linear. As a 
result, strain increments can generally not be calculated directly, and global iterative 
procedures are required to satisfy the equilibrium condition (2.13) for all material points. 
Global iterative procedures are described later in Section 2.4, but the attention is first 
focussed on the (local) integration of stresses. 

2.3 IMPLICIT INTEGRATION OF DIFFERENTIAL PLASTICITY 
MODELS 

The stress increments Ds are obtained by integration of the stress rates according to Eq. 
(2.7). For differential plasticity models the stress increments can generally be written as: 

( )ees peD D-D=D  (2.14) 
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In this relation De represents the elastic material matrix for the current stress increment. 
The strain increments De are obtained from the displacement increments Dv using the 
strain interpolation matrix B, similar to Eq. (2.10).  

For elastic material behaviour, the plastic strain increment Dep is zero. For plastic 
material behaviour, the plastic strain increment can be written, according to Vermeer 
(1979), as: 
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In this equation Dl is the increment of the plastic multiplier and w is a parameter 
indicating the type of time integration. For w = 0 the integration is called explicit and for 
w = 1 the integration is called implicit. 

Vermeer (1979) has shown that the use of implicit integration (w = 1) has some major 
advantages, as it overcomes the requirement to update the stress to the yield surface in 
the case of a transition from elastic to elastoplastic behaviour. Moreover, it can be 
proven that implicit integration, under certain conditions, leads to a symmetric and 
positive differential matrix ∂e / ∂s, which has a positive influence on iterative 
procedures. Because of these major advantages, restriction is made here to implicit 
integration and no attention is given to other types of time integration. 

Hence, for w = 1 Eq. (2.15) reduces to: 
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Substitution of Eq. (2.16) into Eq. (2.14) and successively into Eq. (2.7) gives: 
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etr  with: s tr  = es D+  D e-i 1  (2.17) 

In this relation str is an auxiliary stress vector, referred to as the elastic stresses or trial 
stresses, which is the new stress state when considering purely linear elastic material 
behaviour. 

The increment of the plastic multiplier Dl, as used in Eq. (2.17), can be solved from the 
condition that the new stress state has to satisfy the yield condition: 

( )s if  = 0 (2.18) 

For perfectly-plastic and linear hardening models the increment of the plastic multiplier 
can be written as: 
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lD  = 
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where: 
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The symbol h denotes the hardening parameter, which is zero for perfectly-plastic 
models and constant for linear hardening models. In the latter case the new stress state 
can be formulated as: 

s i  = 
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The -brackets are referred to as McCauley brackets, which have the following 
convention: 

 0=x      for:    x £ 0 and: xx =      for:    x > 0 

For non-linear hardening models the increment of the plastic multiplier is obtained using 
a Newton-type iterative procedure with convergence control. 

2.4 GLOBAL ITERATIVE PROCEDURE 

Substitution of the relationship between increments of stress and increments of strain, 

Ds = M De, into the equilibrium equation (2.13) leads to: 

v  K i i D  = f - f   i-
in

  i
ex

1  (2.22) 

In this equation K is a stiffness matrix, Dv is the incremental displacement vector, fex is 
the external force vector and fin is the internal reaction vector. The superscript i refers to 
the step number. However, because the relation between stress increments and strain 
increments is generally non-linear, the stiffness matrix cannot be formulated exactly 
beforehand. Hence, a global iterative procedure is required to satisfy both the 
equilibrium condition and the constitutive relation. The global iteration process can be 
written as: 

v K j j d  = f - f   j-
in

  i
ex

1  (2.23) 
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The superscript j refers to the iteration number. dv is a vector containing sub-
incremental displacements, which contribute to the displacement increments of step i: 

viD  = v δ j
n

j=
∑

1

 (2.24) 

where n is the number of iterations within step i. The stiffness matrix K, as used in Eq. 
(2.23), represents the material behaviour in an approximated manner. The more accurate 
the stiffness matrix, the fewer iterations are required to obtain equilibrium within a 
certain tolerance. 

In its simplest form K represents a linear-elastic response. In this case the stiffness 
matrix can be formulated as: 

K  = ∫ dV BDB eT  (elastic stiffness matrix) (2.25) 

where De is the elastic material matrix according to Hooke's law and B is the strain 
interpolation matrix. The use of an elastic stiffness matrix gives a robust iterative 
procedure as long as the material stiffness does not increase, even when using non-
associated plasticity models. Special techniques such as arc-length control (Riks, 1979), 
over-relaxation and extrapolation (Vermeer & Van Langen, 1989) can be used to 
improve the iteration process. Moreover, the automatic step size procedure, as 
introduced by Van Langen & Vermeer (1990), can be used to improve the practical 
applicability. For material models with linear behaviour in the elastic domain, such as 
the standard Mohr-Coulomb model, the use of an elastic stiffness matrix is particularly 
favourable, as the stiffness matrix needs only be formed and decomposed before the first 
calculation step. This calculation procedure is summarised in Appendix A. 

For hardening-plasticity models with stress-dependent stiffness behaviour, the stiffness 
matrix is based on the elastic stiffness at the beginning of each step. Hence, for such 
models the stiffness matrix is updated at the beginning of each new step on the basis of 
the stress state at the end of the previous step and kept constant during the equilibrium 
iteration procedure. 
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3 CONSOLIDATION THEORY 

In this chapter we will review the theory of consolidation as used in PLAXIS. In addition 
to a general description of Biot's theory for coupled consolidation, attention is focused 
on the finite element formulation. Moreover, a separate section is devoted to the use of 
advanced soil models in a consolidation analysis (elastoplastic consolidation). 

3.1 BASIC EQUATIONS OF CONSOLIDATION 

The governing equations of consolidation as used in PLAXIS follow Biot's theory (Biot, 
1956). Darcy's law for fluid flow and elastic behaviour of the soil skeleton are also 
assumed. The formulation is based on small strain theory. According to Terzaghi's 
principle, stresses are divided into effective stresses and pore pressures: 

( )steady excessm p ps s= + +¢  (3.1) 

where: 

σ = (σxx σyy σzz σxy σyz σzx) T and: m = ( 1 1 1 0 0 0) T (3.2) 

σ is the vector with total stresses, σ' contains the effective stresses, pexcess is the excess 
pore pressure and m is a vector containing unity terms for normal stress components and 
zero terms for the shear stress components. The steady state solution at the end of the 
consolidation process is denoted as psteady. Within PLAXIS psteady is defined as: 

inputsteady pp =  (3.3) 

where pinput is the pore pressure generated in the input program based on phreatic lines 
after the use of the K0 procedure or gravity loading. Note that within PLAXIS 
compressive stresses are considered to be negative; this applies to effective stresses as 
well as to pore pressures. In fact it would be more appropriate to refer to pexcess and psteady 
as pore stresses, rather than pressures. However, the term pore pressure is retained, 
although it is positive for tension.  

The constitutive equation is written in incremental form. Denoting an effective stress 
increment as 's&  and a strain increment as e& , the constitutive equation is: 

' = M s e&&  (3.4) 

where: 

( )Tzxyzxyzzyyxx gggeeee &&&&&&& =  (3.5) 
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and M represents the material stiffness matrix. For details on constitutive relations, see 
the Material Models manual. 

3.2 FINITE ELEMENT DISCRETISATION 

To apply a finite element approximation we use the standard notation: 

u = N v p = N pn ε = B v (3.6) 

where v is the nodal displacement vector, pn is the excess pore pressure vector, u is the 
continuous displacement vector within an element and p is the (excess) pore pressure. 
The matrix N contains the interpolation functions and B is the strain interpolation 
matrix.  

In general the interpolation functions for the displacements may be different from the 
interpolation functions for the pore pressure. In PLAXIS, however, the same functions are 
used for displacements and pore pressures. 

Starting from the incremental equilibrium equation and applying the above finite 
element approximation we obtain: 

∫ ∫ ∫ ++= 0   rdStdNdVfdNdVdB TTT s  (3.7) 

with: 

∫ ∫ ∫-+= dVBdStNdVfNr TTT
0000 s  (3.8) 

where f is a body force due to self-weight and t represents the surface tractions. In 
general the residual force vector, r0  , will be equal to zero, but solutions of previous 
load steps may have been inaccurate. By adding the residual force vector the 
computational procedure becomes self-correcting. The term dV indicates integration 
over the volume of the body considered and dS indicates a surface integral. 

Dividing the total stresses into pore pressure and effective stresses and introducing the 
constitutive relationship gives the nodal equilibrium equation: 

n n
p fK  d v + L  d  = d  (3.9) 

where K is the stiffness matrix, L is the coupling matrix and dfn is the incremental load 
vector: 

∫= dVBMBK T    (3.10a) 

∫= dVNmBL T    (3.10b) 
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∫ ∫+= dStdNdVfdNfd TT
n

   (3.10c) 

To formulate the flow problem, the continuity equation is adopted in the following form: 

( - - ) / - 0TT
w steady w

w

 n  p  R        y        p                p m
 t  tK
eg g ∂ ∂— + =— ∂ ∂

 (3.11) 

where R is the permeability matrix: 
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n is the porosity, Kw is the bulk modulus of the pore fluid and gw is the unit weight of the 
pore fluid. This continuity equation includes the sign convention that psteady and p are 
considered positive for tension. 

As the steady state solution is defined by the equation: 

( - ) / 0T
w steady w  R        y           pg g— =—  (3.13) 

the continuity equation takes the following form: 

/ - 0TT
w

w

 n  p  R   p                 m
 t  tK
eg ∂ ∂— + =— ∂ ∂

 (3.14) 

Applying finite element discretisation using a Galerkin procedure and incorporating 
prescribed boundary conditions we obtain: 

T n
n

pd d vp L-  H   +    - S  
d t d t

 = q  (3.15) 

where: 

( ) dVNRNH w

T
g/——= ∫ , ∫= dVNN

K
nS T

w
 (3.16) 

and q is a vector due to prescribed outflow at the boundary. However within PLAXIS it is 
not possible to have boundaries with non-zero prescribed outflow. The boundary is 
either closed (zero flux) or open (zero excess pore pressure). In reality the bulk modulus 
of water is very high and so the compressibility of water can be neglected in comparison 
to the compressibility of the soil skeleton.  

In PLAXIS the bulk modulus of the pore fluid is taken automatically according to (also 
see Reference Manual): 
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wK
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 (3.17) 

Where un  has a default value of 0.495. For drained material and material in clusters that 
have just been switched on, the bulk modulus of the pore fluid is neglected. 

The equilibrium and continuity equations may be compressed into a block matrix 
equation: 

T
n

d v
K L d t    -S pdL

d t
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 (3.18) 

A simple step-by-step integration procedure is used to solve this equation. Using the 
symbol Δ to denote finite increments, the integration gives: 

T *
n

K L  v
    pL S-   

D⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥D⎢ ⎥ ⎣ ⎦⎣ ⎦
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 (3.19) 

where: 
*S  =   t  H + Sa D  

*

0n n n
q q q         a= + D  (3.20) 

and v0 and pn0 denote values at the beginning of a time step. The parameter α is the time 
integration coefficient. In general the integration coefficient α can take values from 0 to 
1. In PLAXIS the fully implicit scheme of integration is used with α = 1.  

3.3 ELASTOPLASTIC CONSOLIDATION 

In general, when a non-linear material model is used, iterations are needed to arrive at 
the correct solution. Due to plasticity or stress-dependent stiffness behaviour the 
equilibrium equations are not necessarily satisfied using the technique described above. 
Therefore the equilibrium equation is inspected here. Instead of Eq. (4.9) the equilibrium 
equation is written in sub-incremental form: 

r = p   L + v   K nndd  (3.21) 

where rn is the global residual force vector. The total displacement increment Δv is the 
summation of sub-increments δv from all iterations in the current step: 

∫ ∫ ∫-+= dVBdStNdVfNr TTT
n s  (3.22) 

with: 
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 0
ff      f= + D    and:  0t     tt= + D  (3.23) 

In the first iteration we consider 0 s s= , i.e. the stress at the beginning of the step. 
Successive iterations are used on the current stresses that are computed from the 
appropriate constitutive model. 
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4 ELEMENT FORMULATIONS 

In this chapter the interpolation functions of the finite elements used in the PLAXIS 3D 
FOUNDATION program are described. Each element consists of a number of nodes. Each 
node has a number of degrees of freedom that correspond to discrete values of the 
unknowns in the boundary value problem to be solved. In the case of deformation theory 
the degrees of freedom correspond to the displacement components. In addition to the 
interpolation functions it is described which type of numerical integration over elements 
is used in the program. 

4.1 INTERPOLATION FUNCTIONS AND NUMERICAL INTEGRATION 
OF LINE ELEMENTS 

Within an element the displacement field u = (ux uy uz)T is obtained from the discrete 
nodal values in a vector v = (v1 v2 ... vn)T using interpolation functions assembled in 
matrix N: 

u  = v N  (4.1) 

Hence, interpolation functions N are used to interpolate values inside an element based 
on known values in the nodes. Interpolation functions are also denoted as shape 
functions. 

Let us first consider a line element. Line elements are the basis for distributed loads on 
vertical planes in the 3D model. The extension of this theory to areas and volumes is 
given in the subsequent sections. 

When the local position, x, of a point (usually a stress point or an integration point) is 
known, one can write for a displacement component u: 

( ) ( ) ii

n

i=

 N= u nxx ∑
1

 (4.2) 

 

Figure 4.1  Shape functions for a 3-node line element 
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where:  

vi the nodal values, 

Ni(x) the value of the shape function of node i at position x, 

u(x) the resulting value at position x and 

n the number of nodes per element. 

4.1.1 3-NODE LINE ELEMENTS 
In Fig. 4.1, an example of a 3-node line element is given, which is compatible with the 
side of a  6-node triangle, an 8-node quadrilateral or a 15-node volume element in the 
PLAXIS 3D FOUNDATION program, since these elements also have three nodes on a side. 
The shape functions Ni have the property that the function value is equal to unity at node 
i and zero at the other nodes. For 3-node line elements, where nodes 1, 2 and 3 are 
located at x = -1, 0 and 1 respectively, the shape functions are given by: 

N1 = - ½ (1-x) x (4.3) 

N2 = (1+x) (1-x) 

N3 =   ½ (1+x) x 

3-node line elements provide a second-order interpolation of displacements. These 
elements are the basis for distributed line loads and for beam elements. 

4.1.2 NUMERICAL INTEGRATION OF LINE ELEMENTS 
In order to obtain the integral over a certain line, the integral is numerically estimated 
as: 

( ) ( ) ii

k

=i-=

 wF   dF xxx
x

∑∫ ª
1

1

1

 (4.4) 

where F(xi) is the value of the function F at position xi and wi the weight factor for point 
i. A total of k sampling points is used. A method that is commonly used for numerical 
integration is Gaussian integration, where the positions xi and weights wi are chosen in a 
special way to obtain high accuracy. For Gaussian-integration a polynomial function of 
degree 2k-1 can be integrated exactly by using k points. The position and weight factors 
of the two types of integration are given in Table 4.1. Note that the sum of the weight 
factors is equal to 2, which is equal to the length of the line in local coordinates. The 
type of integration used for the 3-node line elements is shaded.  
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Table 4.1  Gaussian integration 
 xi wi max. polyn. degree 

1 point 0.000000... 2 1 

2 points ±0.577350...(±1/÷3) 1 3 

3 points ±0.774596... (±÷0.6) 

  0.000000... 

0.55555... (5/9) 

0.88888... (8/9) 

5 

4 points ±0.861136... 
±0.339981... 

0.347854... 

0.652145... 

7 

5 points ±0.906179... 

±0.538469... 

  0.000000... 

0.236926... 

0.478628... 

0.568888... 

9 

4.2 INTERPOLATION FUNCTIONS AND NUMERICAL INTEGRATION 
OF AREA ELEMENTS 

Areas and surfaces in the PLAXIS 3D FOUNDATION program are either formed by 6-node 
triangular elements or by 8-node quadrilateral elements. The interpolation functions and 
the type of integration of these elements is described in the following subsections. 

4.2.1 6-NODE TRIANGULAR ELEMENTS 
The 6-node triangles are created in the 2D mesh generation process and used in the 
(pseudo-) horizontal planes of the 3D model to form the faces of the 15-node wedge 
elements for soil. The 6-node triangles are also the basis for floor elements and 
distributed loads on work planes in the 3D model. 

For triangular elements there are two local coordinates (x and h). In addition we use an 
auxiliary coordinate z = 1-x-h. 6-node triangular elements provide a second-order 
interpolation of displacements. The shape functions can be written as (see the local node 
numbering as shown in Figure 4.2) : 

N1  = z (2z-1) (4.5) 

N2  = x (2x-1) 

N3  = h (2h-1) 

N4  = 4 z x 

N5  = 4 x h  

N6  = 4 h z  
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Figure 4.2 Local numbering and positioning of nodes (∑) and integration points (x) of a 

6-node triangular element 

As for line elements, one can formulate the numerical integration over areas as: 

( ) ( ) iii

k

=i

w  , F   d  d  ,F hxhxhx ∑∫∫ ª
1

 (4.6) 

The PLAXIS 3D FOUNDATION program uses Gaussian integration within the area 
elements. For 6-node triangular elements the integration is based on 3 sample points (see 
Fig. 4.2). The position and weight factors of the integration points are given in Table 
4.2. Note that the sum of the weight factors is equal to 1. 

Table 4.2  3-point Gaussian integration for 6-node triangular elements 
Point xi hi wi 
1 1/6 2/3 1/3 
2 1/6 1/6 1/3 
3 2/3 1/6 1/3 

4.2.2 8-NODE QUADRILATERAL ELEMENTS 
The 8-node quadrilateral elements are created in the 3D mesh extension process and 
they are used at the faces of the 15-node wedge elements in the y-direction. These 
elements are the basis for wall elements and distributed loads between work planes in 
the 3D model and for interface elements. 8-node quadrilateral elements provide a 
second-order interpolation of displacements. Quadrilateral elements have two local 
coordinates (x and h). The shape functions of 8-node elements can be written as (see the 
local node numbering as shown in Figure 4.3): 

N1  =  (1-x) (1-h) (-1-x-h) / 4 (4.7) 

N2  =  (1+x) (1-h) (-1+x-h) / 4 

z=1.0 

1 4 2 
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5 

h=0.0 
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h=1.0 
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N3  =  (1+x) (1+h) (-1+x+h) / 4 

N4  =  (1-x) (1+h) (-1-x+h) / 4 

N5  =  (1-x) (1+x) (1-h) / 2 

N6  =  (1-x) (1+x) (1+h) / 2 

N7  =  (1-h) (1+h) (1+x) / 2 

N8 =  (1-h) (1+h) (1-x) / 2 

For 8-node quadrilateral elements the numerical integration is based on 4 (2x2) Gauss 
points (see Figure 4.3), equivalent to the integration of line elements, but in two 
directions. The position and weight factors of the integration points are given in Table 
4.3. The sum of the weight factors is equal to 4, which is equal to the area of the 
quadrilateral in local coordinates.  

Table 4.3  4-point Gaussian integration for 8-node quadrilateral elements 
Point xi hi wi 
1 -1/3 ÷3 -1/3 ÷3 1 
2 +1/3 ÷3 -1/3 ÷3 1 
3 -1/3 ÷3 +1/3 ÷3 1 
4 +1/3 ÷3 +1/3 ÷3 1 

 
 

Figure 4.3 Local numbering and positioning of nodes (∑) and integration points (x) of 
an 8-node quadrilateral element 

4.2.3 STRUCTURAL ELEMENTS 
Structural area elements in the PLAXIS 3D FOUNDATION program, i.e. beams, floors, 
walls and interfaces are based on the line elements and area elements as described in the 
previous sections. However, there are some differences.  

1 5 2 

8 

4 

6 

h=-1.0 
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h=1.0 
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3 7 
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Beam Elements 
The 3-node beam elements are used to describe semi-one-dimensional structural objects 
with flexural rigidity. Beam elements are slightly different from 3-node line element in 
the sense that they have six degrees of freedom per node instead of three, i.e. three 
translational d.o.f.s (ux, uy, uz) and three rotational d.o.f.s (fx, fy, fz). These elements are 
directly integrated over their cross-section and numerically integrated along their length 
using 4-point Gaussian integration according to Table 4.1. The element provides a 
quadratic interpolation of the longitudinal displacements (See Eq. 4.3) and a fifth-order 
interpolation of transverse displacements. For beam elements there is one local 
coordinate (x). The shape function for transverse displacement can be written as (see the 
local node numbering as shown in Figure 4.1): 

N1u  =  (4x 2 -5 x 3-2 x 4+3 x 5) / 4  (4.8) 

N2u  = 1-2 x 2+ x 4 

N3u  =  (4 x 2+5 x 3-2 x 4-3 x 5) / 4 

N1φ  =  (x 2- x 3- x 4+ x 5) / 4 

N2φ  =  x-2x 3+ x 5 

N3φ  =  (-x 2- x 3+ x 4+ x 5) / 4 

Wall elements 
Wall elements are slightly different from 8-node quadrilaterals in the sense that they 
have six degrees of freedom per node instead of three, i.e. three translational d.o.f.s (ux, 
uy, uz) and three rotational d.o.f.s (fx, fy, fz). These elements are directly integrated over 
their cross-section and numerically integrated over their area using 4 (2x2) point 
Gaussian integration. The position of the integration points is indicated in Figure 4.4 and 
corresponds with Table 4.3. 

 

 

 

 

 

 

 

 

Figure 4.4 Local numbering and positioning of nodes (∑) and integration points (x) of 
an 8-node plate element 
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Floor elements 
Floor elements are different from the 6-node triangles in the sense that they have six 
degrees of freedom per node instead of three, i.e. three translational d.o.f.s (ux, uy, uz) 
and three rotational d.o.f.s (fx, fy, fz). These elements are directly integrated over their 
cross-section and numerically integrated using 3 point Gaussian integration. The 
position of the integration points is indicated in Figure 4.5 and corresponds with Table 
4.2. 
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Figure 4.5 Local numbering and positioning of nodes (∑) and integration points (x) of a 

6-node plate triangle. 

Interface elements 
Interface elements are different from the 8-node quadrilaterals in the sense that they 
have pairs of nodes instead of single nodes. Moreover, interface elements have a 3x3 
point Gaussian integration instead of 2x2. The position and numbering of the nodes and 
integration points is indicated in Figure 4.6 (see also Table 4.4). The distance between 
the two nodes of a node pair is zero. Each node has three translational degrees of 
freedom (ux, uy, uz). As a result, interface elements allow for differential displacements 
between the node pairs (slipping and gapping). For more information see Van Langen 
(1991). 

 

 

 

 

 

Figure 4.6 Local numbering and positioning of nodes (∑) and integration points (x) of a 
16-node interface element 
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Table 4.4  9-point Gaussian integration for 16-node interface elements 
Point xi hi wi 
1 -0.774596 -0.774596 0.308642 
2   0.000000 -0.774596 0.493827 
3 +0.774596 -0.774596 0.308642 
4 -0.774596   0.000000 0.493827 
5   0.000000   0.000000 0.790124 
6 +0.774596   0.000000 0.493827 
7 -0.774596 +0.774596 0.308642 
8   0.000000 +0.774596 0.493827 
9 +0.774596 +0.774596 0.308642 

4.3 INTERPOLATION FUNCTIONS AND NUMERICAL INTEGRATION 
OF VOLUME ELEMENTS 

The soil volume in the PLAXIS 3D FOUNDATION program is modelled by means of 15-
node wedge elements. The interpolation functions, their derivatives and the numerical 
integration of this type of element are described in the following subsections. 

4.3.1 15-NODE WEDGE ELEMENTS 
The 15-node wedge elements are created in the 3D mesh extension procedure. This type 
of element provides a second-order interpolation of displacements. For wedge elements 
there are three local coordinates (x, h and ζ). The shape functions of these 15-node 
volume elements can be written as (see the local node numbering as shown in the Fig. 
4.7): 

N1  =  - (1-x-h) (1- ζ) (+2x+2h+ ζ) / 2 (4.9) 

N2  =            - x  (1- ζ) (2-2x- ζ) / 2 

N3  =            - h (1- ζ) (2-2h+ ζ) / 2 

N4  =  - (1-x-h) (1+ ζ) (+2x+2h- ζ) / 2 

N5  =            - x  (1+ ζ) (2-2x+ ζ) / 2 

N6  =            - h (1+ ζ) (2-2h- ζ) / 2 

N7  =     (1-x-h) x (1- ζ) * 2 

N8 =                x h (1- ζ) * 2 

N9  =    h (1-x-h) (1- ζ) * 2 

N10  =   (1-x-h) (1- ζ) (1+ ζ) 

N11 =              x (1- ζ) (1+ ζ) 
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N12 =              h (1- ζ) (1+ ζ) 

N13 =     (1-x-h) x (1+ ζ) * 2 

N14 =                xh (1+ ζ) * 2 

N15 =    h (1-x-h) (1+ ζ) * 2 

For one fold degenerated wedge elements, a 15 node wedge element is used in which the 
three nodes along one side coincide (Figure 4.8). For two fold degenerated wedge 
elements, a 15 node wedge element is used in which the nodes, five in total, along two 
sides coincide. 

 
Figure 4.7 Local numbering and positioning of nodes (∑) and integration points (x) of a 

15-node wedge element  
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Figure 4.8 Local numbering and positioning of nodes (∑) and integration points (x) of a 

one fold degenerated (reduced) 15-node wedge element 
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4.3.2 NUMERICAL INTEGRATION OVER VOLUMES 
As for lines and areas, one can formulate the numerical integration over volumes as: 

( ) ( ) iiii

k

=i

w   ,F  d d d ,F zhxzhxzhx ,,
1
∑∫∫ ∫ ª  (4.10) 

The PLAXIS 3D FOUNDATION program uses Gaussian integration within the wedge 
elements. For 15-node wedge elements the integration is based on 6 sample points. The 
integration is a mixture between the 3-point integration of a 6-node triangular element 
and the 4-point integration of an 8-node quadrilateral. The position and weight factors of 
the integration points are given in Table 4.5. See Figure 4.7 and Figure 4.8 for the local 
numbering of integration points. Note that the sum of the weight factors are equal to 2. 

 Table 4.5  6-point Gaussian integration for 15-node wedge element 
Point xi hi zi wi 
1 1/6 2/3 -1/3÷3 1/3 
2 1/6 1/6 -1/3÷3 1/3 
3 2/3 1/6 -1/3÷3 1/3 
4 1/6 2/3 +1/3÷3 1/3 
5 1/6 1/6 +1/3÷3 1/3 
6 2/3 1/6 +1/3÷3 1/3 

 

4.3.3 DERIVATIVES OF SHAPE FUNCTIONS 
In order to calculate Cartesian strain components from displacements, such as 
formulated in Eq. (2.10), derivatives need to be taken with respect to the global system 
of axes (x,y,z).  

e  = ii v B  (4.11) 

where 
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Within the elements, derivatives are calculated with respect to the local coordinate 
system (x,h,z). The relationship between local and global derivatives involves the 
Jacobian J: 
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Or inversely: 
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The local derivatives ∂Ni/∂x, etc., can easily be derived from the element shape 
functions, since the shape functions are formulated in local coordinates. The components 
of the Jacobian are obtained from the differences in nodal coordinates. The inverse 
Jacobian J-1 is obtained by numerically inverting J. 
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The Cartesian strain components can now be calculated by summation of all nodal 
contributions: 
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where vi are the displacement components in node i.  

4.3.4 CALCULATION OF ELEMENT STIFFNESS MATRIX 
The element stiffness matrix, Ke, is calculated by the integral (see also Eq. 2.25): 

∫= dVBDBK eTe  (4.16) 

The integral is estimated by numerical integration as described in Section 4.3.2. In fact, 
the element stiffness matrix is composed of submatrices e

ijK  where i and j are the local 
nodes. The process of calculating the element stiffness matrix can be formulated as: 

∑=
k

kj
eT

i
e
ij wBDBK  (4.17) 
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APPENDIX A - CALCULATION PROCESS 
Finite element calculation process based on the elastic stiffness matrix 
Read input data 

Form stiffness matrix    K  = ∫ V d B D B eT  

New step     i Æ i + 1 

Form new load vector   f i
ex  =  f f

ex
 i-
ex D+1  

Form reaction vector    f 
in  = ∫ d VσB i-

c
T 1  

Calculate unbalance    f D  = f i
ex  - f 

in  

Reset displacement increment   v D  = 0 

New iteration     j Æ j + 1 

Solve displacements   v d  = f K - D1   * 

Update displacement increments  v jD  = v  + v -j d1D  

Calculate strain increments  e D = v  B D  ;   ed   = v  B d  

Calculate stresses: Elastic  s tr  = es   D + e-i
c D1  

Equilibrium s eq  = eds   D + e-ji,
c

1  

      Constitutive s ji,
c  =  

( )
s

s
s

 
g  D 

d

 f
 - e

tr
tr

∂
∂

 

  Form reaction vector   f 
in  = ∫ V dB ji,

c
Ts  

Calculate unbalance   f D  = f i 
ex  - f 

in  

  Calculate error    e = 
| f  |

|  f  |
i
ex

D
 

  Accuracy check    if  e > etolerated Æ new iteration 

 Update displacements   vi  = v  + v -i D1  
Write output data (results) 

 If not finished Æ new step  
Finish 
* The solution of the system of equations is done using a sparse iterative solution procedure 
with smart preconditioning. For normal elastoplastic deformation calculations the solution is 
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based on the Conjugate Gradient method (CG), whereas for consolidation calculations (resulting 
in an indefinite matrix) the solution is based on  SYM-QMR1. The preconditioning is based on the 
elastic material stiffness matrix with diagonal scaling and using a variable drop tolerance. 

 

 

 

 

 

                                                           

1 Freund R.W., Jarre F. (1996). A QMR-based interior-point algorithm for solving 
linear programs. Mathematical Programming Series ~ B 76, pp. 183-210. 
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APPENDIX B - SYMBOLS 
B  : Strain interpolation matrix 

De  : Elastic material stiffness matrix representing Hooke's law 

f  : Yield function 

f  : Load vector 

g  : Plastic potential function 

K  : Stiffness matrix 

L  : Differential operator 

M  : Material stiffness matrix 

N  : Matrix with shape functions 

p  : Body forces vector 

t  : Time 

t  : Boundary tractions 

u  : Vector with displacement components 

v  : Vector with nodal displacements 

V  : Volume 

w  : Weight factor 

g  : Volumetric weight 

e  : Vector with strain components 

l  : Plastic multiplier 

x h z  : Local coordinates 

s  : Vector with stress components 

w  : Integration constant  (explicit: w = 0; implicit: w = 1) 
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